Hepatitis delta in HIV patients in Europe

Vincent Soriano, Daniel Grint, Antonella d’Arminio Monforte, Andrzej Horban, Clifford Leen, Eva Poveda, Francisco Antunes, Stephane de Wit, Jens Lundgren, Juergen Rockstroh and Lars Peters, for EuroSIDA in EuroCoord

EACS 2011, Belgrade Serbia
14th October 2011
Hepatitis D

- HDV is a small RNA (1.7 Kb) defective agent that only replicates in the presence of HBsAg.
- Two clinical forms: co-infection and super-infection.
- Hepatitis delta is the most aggressive viral hepatitis.
- 15-20 million people infected worldwide (~5% of chronic HBV).
- Endemic in the Middle East, Amazonian region, Central Asia, Central Africa & Mediterranean basin
- Transmitted mainly parenterally (IDU outbreaks) and sexually.
- Given that HDV use human host enzymes for replication, no specific antivirals have been developed so far. Interferon provides benefit in less than a quarter of patients.
Objectives

• Investigation of delta hepatitis in EuroSIDA:

 ➢ Prevalence and correlates of HDV infection

 ➢ Impact on survival
EuroSIDA

Large prospective cohort with over **16,597** patients from 33 European countries, Israel and Argentina.

- Demographics
- CD4 counts & viral loads
- Start/stop dates of all drugs
- AIDS defining illnesses & deaths
- Non-AIDS malignancies
Study population

• All individuals with available plasma samples recruited in EuroSIDA until 2006.

• Clinical follow-up extended up to March 2011.

Delta virologic sub-study in EuroSIDA

<table>
<thead>
<tr>
<th>Virus</th>
<th>Markers</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBV</td>
<td>HBsAg</td>
<td>EIA</td>
</tr>
<tr>
<td></td>
<td>HBV-DNA</td>
<td>bDNA (LLD 600 IU/ml)</td>
</tr>
<tr>
<td></td>
<td>HBV genotypes</td>
<td>LiPA</td>
</tr>
<tr>
<td>HDV</td>
<td>HBV Ab</td>
<td>EIA</td>
</tr>
<tr>
<td></td>
<td>HDV-RNA</td>
<td>q-PCR (LLD 10 IU/ml)*</td>
</tr>
<tr>
<td>HCV</td>
<td>HCV Ab</td>
<td>EIA</td>
</tr>
<tr>
<td></td>
<td>HCV-RNA</td>
<td>real time-PCR (Roche)</td>
</tr>
</tbody>
</table>

* Le Gal et al. JCM 2005
Statistical analysis

- Chi square tests and Wilcoxon (or Kruskall-Wallis) for comparisons.

- Logistic regression for identification of factors associated with anti-HDV+.

- Multivariate Poisson regression modelling for assessing predictors of progression to clinical end points (AIDS, LRD, death).
Results

<table>
<thead>
<tr>
<th>Total no. patients</th>
<th>16,597</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg+</td>
<td>1,319 (7.9%)</td>
</tr>
</tbody>
</table>
| Anti-HDV Ab+ | 61/422 (14.5%)
 (95% CI: 11.1-17.8) |
| HDV-RNA+ | 31/38 (81.6%)
 (95% CI: 69.3-93.9%) |

Median follow-up HBsAg+ patients

90.2 months (IQR 51.1 – 135.2).
Prevalence of anti-HDV Ab in HBsAg+ patients in EuroSIDA

- **North**: 9% (13/139)
- **Central**: 21% (16/77)
- **East**: 11% (16/142)
- **South**: 25% (16/64)

Legend:
- Light blue: north
- Yellow: central
- Green: east
- Red: south
<table>
<thead>
<tr>
<th>Variable</th>
<th>All HBsAg+ patients</th>
<th>HDV Ab-positive</th>
<th>HDV Ab-negative</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. (%)</td>
<td>422</td>
<td>61 (14.5)</td>
<td>361 (85.5)</td>
<td></td>
</tr>
<tr>
<td>Median age (years)</td>
<td>37</td>
<td>34</td>
<td>38</td>
<td>0.0007</td>
</tr>
<tr>
<td>Male gender (%)</td>
<td>84.1</td>
<td>72.1</td>
<td>86.1</td>
<td>0.0056</td>
</tr>
<tr>
<td>White ethnicity (%)</td>
<td>357 (84.6)</td>
<td>54 (88.5)</td>
<td>303 (83.9)</td>
<td>0.36</td>
</tr>
<tr>
<td>Risk group (%)</td>
<td></td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>MSM</td>
<td>213 (50.5)</td>
<td>7 (11.5)</td>
<td>206 (57.1)</td>
<td></td>
</tr>
<tr>
<td>IDU</td>
<td>104 (24.6)</td>
<td>44 (72.1)</td>
<td>60 (16.6)</td>
<td></td>
</tr>
<tr>
<td>Heterosexual</td>
<td>67 (15.9)</td>
<td>6 (9.8)</td>
<td>61 (16.9)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>38 (9.0)</td>
<td>4 (6.5)</td>
<td>34 (9.4)</td>
<td></td>
</tr>
<tr>
<td>Median CD4 count (cells/µL)</td>
<td>285</td>
<td>281</td>
<td>294</td>
<td>0.53</td>
</tr>
<tr>
<td>Median nadir CD4 count (cells/µL)</td>
<td>142</td>
<td>143</td>
<td>141</td>
<td>0.90</td>
</tr>
<tr>
<td>Median plasma HIV-RNA (log cop/mL)</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>0.77</td>
</tr>
<tr>
<td>Patients on HAART (%)</td>
<td>310 (73.5)</td>
<td>41 (67.2)</td>
<td>269 (74.5)</td>
<td>0.23</td>
</tr>
<tr>
<td>Patients on 3TC, TDF or FTC (%)</td>
<td>299 (70.9)</td>
<td>41 (67.2)</td>
<td>258 (71.5)</td>
<td>0.50</td>
</tr>
<tr>
<td>HCV-Ab positive (%)</td>
<td>119 (28.2)</td>
<td>43 (70.5)</td>
<td>76 (21.1)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Serum HBV-DNA positive (%)</td>
<td>61</td>
<td>59</td>
<td>63</td>
<td>0.54</td>
</tr>
<tr>
<td>Median HBV-DNA (IU/mL)</td>
<td>19,346</td>
<td>949</td>
<td>24,522</td>
<td>0.003</td>
</tr>
<tr>
<td>Serum HBV-DNA >10^7 IU/ml (%)</td>
<td>17</td>
<td>11</td>
<td>20</td>
<td>0.11</td>
</tr>
<tr>
<td>HBV genotypes (%)</td>
<td></td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>D</td>
<td>39</td>
<td>50</td>
<td>12</td>
<td><0.01</td>
</tr>
<tr>
<td>A</td>
<td>56</td>
<td>27</td>
<td>78</td>
<td><0.01</td>
</tr>
</tbody>
</table>
Predictors of serum HBV-DNA levels
Multivariate regression model

- Female gender: p-value 0.5
- Non-white ethnicity: p-value 0.2
- Age (per 10 years): p-value 0.2
- Baseline CD4 count (per 100 cells/µL): p-value 0.9
- CD4 nadir (per 100 cells/µL): p-value 0.4
- Plasma HIV-RNA (log copies/mL): p-value 0.2
- Use of anti-HBV drugs: p-value 0.3
- Anti-HDV+: p-value 0.001
- Anti-HCV+: p-value 0.8
- HBV genotype A: p-value 0.03

Estimate (β; 95% CI): -0.7 (-1, 0) for Anti-HDV+; -0.5 (-1, 0) for HBV genotype A.
Progression to AIDS or death
(91 events; 3233 PYFU)

- **Anti-HDV Ab**: 2.2 (p-value < 0.01)
- **CD4 count (per 100 cells/µl)**: 0.7 (p-value < 0.01)
- **CD4 nadir (per 100 cells/µl)**: 1.3 (p-value 0.21)
- **Plasma HIV-RNA (per 1 log cop/ml)**: 1.3 (p-value < 0.01)
- **Antiretroviral therapy**: 0.5 (p-value 0.43)
- **Male gender**: 1.7 (p-value 0.04)
- **Age (per 10 years)**: 2.2 (p-value < 0.01)
- **White ethnicity**: 0.5 (p-value 0.61)
- **Anti-HCV Ab**: 0.5 (p-value 0.65)
- **HBV genotypes: A vs. D**: 0.43 (p-value 0.43)
 - **Others vs. D**: 0.94 (p-value 0.94)
 - **Unknown vs. D**: 0.84 (p-value 0.84)
Progression to AIDS
(31 events; 3069 PYFU)

- Anti-HDV Ab
 - p-value: 0.37

- CD4 count (per 100 cells/µl)
 - Adjusted incidence rate ratio: 0.5
 - p-value: <0.01

- CD4 nadir (per 100 cells/µl)
 - p-value: 0.28

- Plasma HIV-RNA (per 1 log cop/ml)
 - Adjusted incidence rate ratio: 1.4
 - p-value: 0.03

- Antiretroviral therapy
 - p-value: 0.99

- Male gender
 - p-value: 0.87

- Age (per 10 years)
 - p-value: 0.42

- White ethnicity
 - p-value: 0.86

- Anti-HCV Ab
 - p-value: 0.64

- HBV genotypes: A vs. D
 - p-value: 0.49

- Others vs. D
 - p-value: 0.91

- Unknown vs. D
 - p-value: 0.39
Progression to death
(76 events; 3355 PYFU)

- Anti-HDV Ab
- CD4 count (per 100 cells/µl)
- CD4 nadir (per 100 cells/µl)
- Plasma HIV-RNA (per 1 log cop/ml)
- Antiretroviral therapy
- Male gender
- Age (per 10 years)
- White ethnicity
- Anti-HCV Ab
- HBV genotypes: A vs. D
 - Others vs. D
 - Unknown vs. D

Adjusted incidence rate ratio (95% CI)

- Adjusted incidence rate ratio: 0.5, 0.13, 0.38, 0.43, 0.70, 0.87
Progression to LRD
(21 events; 3382 PYFU)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adjusted incidence rate ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-HDV Ab</td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>CD4 count (per 100 cells/µl)</td>
<td>4.4</td>
<td><0.01</td>
</tr>
<tr>
<td>CD4 nadir (per 100 cells/µl)</td>
<td>0.3</td>
<td>0.10</td>
</tr>
<tr>
<td>Plasma HIV-RNA (per 1 log cop/ml)</td>
<td></td>
<td>0.92</td>
</tr>
<tr>
<td>Antiretroviral therapy</td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td>Male gender</td>
<td></td>
<td>0.41</td>
</tr>
<tr>
<td>Age (per 10 years)</td>
<td>2.1</td>
<td><0.01</td>
</tr>
<tr>
<td>White ethnicity</td>
<td></td>
<td>0.28</td>
</tr>
<tr>
<td>Anti-HCV Ab</td>
<td></td>
<td>0.78</td>
</tr>
<tr>
<td>HBV genotypes: A vs. D</td>
<td></td>
<td>0.58</td>
</tr>
<tr>
<td>Others vs. D</td>
<td></td>
<td>0.58</td>
</tr>
<tr>
<td>Unknown vs. D</td>
<td></td>
<td>0.57</td>
</tr>
</tbody>
</table>
Limitations

• Assessment of HDV markers in only a fraction of HBsAg+ patients (422/1319; 32%). However, the delta population (n=61) is the largest characterized virologically so far in HIV patients.

• Lack information on HBeAg status. It was not recorded and could have driven the association found between HBV genotypes and serum HDV-RNA.
Conclusions

• The overall prevalence of anti-HDV in chronic HBsAg+/HIV carriers in EuroSIDA is **14.5%**.

• Most anti-HDV patients exhibit detectable HDV viremia.

• Viral interference between HBV and HDV is manifested in all but HBV genotype D carriers, in whom overt co-replication of both viruses occurs, which might result in enhanced liver damage.

• We report for the first time that Delta hepatitis increases the risk of liver-related deaths and overall mortality in HIV patients.
The EuroSIDA Study Group

Argentina: (M Losso), C Elias, Hospital JM Ramos Mejia, Buenos Aires; Austria: (N Vetter), Pulmonologisches Zentrum der Stadt Wien, Vienna; R Zangerle, Medical University Innsbruck, Innsbruck; Belarus: (I Karpov), A Vassilenko, Belarus State Medical University, Minsk, VM Mitsura, Gomez State Medical University, Gomez; O Suetnov, Regional AIDS Centre, Svetlogorsk; Belgium: (N Clumeck), S De Wit, M Delforge, Saint-Pierre Hospital, Brussels; R Colebunders, Institute of Tropical Medicine, Antwerp; L Vanderkerckhove, University Ziekenhuis Gent, Gent; Bosnia-Herzegovina: (V Hadziosmanovic), Klinicki Centar Univerziteta Sarajevo, Sarajevo; Bulgaria: (K Kostov), Infectious Diseases Hospital, Sofia; Croatia: (J Begovac), University Hospital of Infectious Diseases, Zagreb; Czech Republic: (L Machala), D Jilich, Faculty Hospital Bulovka, Praque; D Sedlacek, Charles University Hospital, Plzen; Denmark: (J Nielsen), G Kronborg, T Benfield, M Larsen, Hvidovre Hospital, Copenhagen; J Gerstoft, T Katzenstein, A B-E Hansen, P Skinhøj, Rigshospitalet, Copenhagen; C Pedersen, Odense University Hospital, Odense; L Ostergaard, Skejby Hospital, Aarhus; Estonia: (K Zilmer), West-Tallinn Central Hospital, Tallinn; Jelena Simidt, Nakusosakond Siseklinik, Kohtla-Järve; Finland: (M Ristola), Helsinki University Central Hospital, Helsinki; France: (C Katlama), Hôpital de la Pitié-Salpêtrière, Paris; J-P Viard, Hôpital Necker-Enfants Malades, Paris; P-M Girard, Hospital Saint-Antoine, Paris; JM Livozret, Hôpital Edouard Herriot, Lyon; L Vanhems, University Claude Bernard Lyon; C Pradier, Hôpital de l'Archet, Nice; F Dabis, D Neau, Unité INSERM, Bordeaux; Germany: (J Rockstroh), Universitäts Klinik Bonn; R Schmidt, Medizinische Hochschule Hannover; Hungary: (D Banhegyi), Szent László Hospital, Budapest; Ireland: (F Mulcahy), St. James's Hospital, Dublin; Israel: (I Yust), D Turner, M Burke, Ichilov Hospital, Tel Aviv; S Pollack, G Hassan, Rambam Medical Center, Haifa; S Mayan, Hadassah University Hospital, Jerusalem; Italy: (S Vella), Istituto Superiore di Sanità, Rome; R Espouso, I Mazeu, Università Modena, Modena; C Arici, Ospedale Riuniti, Bergamo; P Pristera, Ospedale Generale Regionale, Bolzano; F Mazzotta, A Gabbuti, Ospedale S Maria Annunziata, Firenze; V Vullo, M Lichtner, University of Roma la Sapienza, Rome; A Chirianni, E Montesarchio, M Gargiulo, Presidio Ospedaliero AD Cotugno, Naples; M Cazzarelli, Istituto Nazionale Malattie Infettive Lazzaro Spallanzani, Rome; A Lazzarin, G Antonucci, N Gianotti, Ospedale San Raffaele, Milan; M Galli, A Ridolfo, Osp. L. Sacco, Milan; A d'Arminio Monforte, Istituto Di Clinica Malattie Infettive e Tropicale, Milan; Latvia: (B Rozentale), I Zeltina, Infectology Centre of Latvia, Riga; Lithuania: (S aplinskis), Lithuanian AIDS Centre, Vilnius; Luxembourg: (R Hemmer), T Staub, Centre Hospitalier, Luxembourg; Netherlands: (P Reiss), Academisch Medisch Centrum bij de Universiteit van Amsterdam, Amsterdam; Norway: (V Ormaesen), A Maeland, J Bruun, Ulevåls Hospital, Oslo; Poland: (B Knyz) J Gasiorskiw, Medical University, Wroclaw; A Horban, E Bakowska, Centrum Diagnostyki i Terapii AIDS, Warsaw; R Grzeszczuk, R Fisiak, Medical University, Białystok; A Boron-Kaczmarska, M Pynka, M Parczewski, Medical University, Szczecin; M Beniowski, E Mulikska, Osrodek Diagnostyki i Terapii AIDS, Chorzów; H Trocha, Medical University, Gdansk; E Jablonowska, E Maleoldska, K Wojcik, Wojewodzki Szpital Specjalistyczny, Lodz; Portugal: (F Antunes), M Doroana, L Caldeira, Hospital Santa Maria, Lisbon; F Melatez, Hospital Curry Cabral, Lisbon; Romania: (D Duiculescu), Spitalul de Boli Infectoase si Tropicale: Dr. Victor Babes, Bucharest; Russia: (A Rakhmanova), Medical Academy Botkin Hospital, St Petersburg; N Zakharova, St Petersburg AIDS Centre, St Petersburg; S Buzunova, Novgorod Centre for AIDS, Novgorod; Serbia: (D Jevtic), The Institute for Infectious and Tropical Diseases, Belgrade; Slovakia: (M Mokráš), D Staneková, Dérer Hospital, Bratislava; Slovenia: (J Tomazic), University Medical Centre Ljubljana, Ljubljana; Spain: (J Tural), J Puig, I Bravo, Hospital Germans Trias i Pujol, Badalona; JM Gatell, JM Miró, Hospital Clinic i Provincial, Barcelona; P Domingo, M Gutierrez, G Mateo, Hospital Sant Pau, Barcelona; Sweden: (A Karlsson), Venhaelsan-Sodersjukhuset, Stockholm; MӖer, A Medical University Hospital, Malmo; Switzerland: (B Ledergerber), R Weber, University Hospital Zurich, Zurich; F Francioli, Centre Hospitalier Universitaire Vaudois, Lausanne; F Hirschel, E Botti, Hospital Cantonal Universitaire de Geneve, Geneva; H Furrer, Inselspital Bern, Bern; M Battegay, E Lelii, University Hospital Basle, Basil; (K Ravchenko), N Chentsova, Kiev Centre for AIDS, Kiev; F Frolov, G Kutysyna, Luhansk State Medical University; Luhansk, S Servinsky, Odessa Region AIDS Center, Odessa; M Krasnov, Kharkov State Medical University, Kharkov; United Kingdom: (S Barton), The Royal Free and University College Medical School, London; J Weber, G Scullard, Imperial College School of Medicine at St Mary's, London; M Murphy, Royal Sussex County Hospital, Brighton; C Leen, Western General Hospital, Edinburgh.

Steering Committee: J Gatell, B Gazzard, A Horban, B Ledergerber, M Losso, J Lundgren, A d’Arminio Monforte, C Pedersen, A Phillips, A Rakhmanova, P Reiss, M Ristola, J Rockstroh (Chair), S De Wit (Vice-Chair).