Is Response to Anti-HCV Treatment Predictive of Mortality in HCV/HIV Co-infected Patients?

Lars Peters for the hepatitis working group of COHERE in EuroCoord
Presenter disclosures

• The presenting author has no conflicts of interest
Background

- Observational studies of HCV mono-infected, a sustained virologic response (SVR) has been associated with reduced all-cause and liver-related mortality.

- In HIV/HCV patients, mixed retrospective-prospective studies from Spain, have shown that, compared with patients who achieved SVR, non-responders to HCV treatment had:
 - an almost nine-fold increased risk of liver-related clinical events
 - reduced risk of HIV progression and non-liver-related death

- Compared with HCV mono-infected patients, the benefit of HCV treatment of HIV/HCV patients could be:
 - greater due to accelerated fibrosis progression in co-infected patients
 - lower due to higher prevalence of competing risk factors (both HIV-related and lifestyle factors) for mortality.

1Berenguer, Hepatology 2009
2Berenguer, CID 2012
Objectives

- To compare the long-term risk of
 - all-cause mortality
 - liver-related death
 - Non-liver-related death

according to HCV treatment response in HIV/HCV co-infected patients in the prospective multi-cohort study COHERE
Methods

• The Collaboration of Observational HIV Epidemiological Research in Europe COHERE is a collaboration of 33 cohorts from across Europe and is part of the EuroCoord network

• Eighteen cohorts provided data for the present analysis.

• Analyses were based on data merged in July 2013
Inclusion criteria

• All HIV/HCV co-infected COHERE patients who had ever started interferon-based (IFN) therapy (baseline) and were followed-up for ≥96 weeks after baseline
Definition of HCV treatment response

- **Follow-up HCV-RNA not available in all**
 - **Non responders**
 - **Responders**
 - **Unknown**

<table>
<thead>
<tr>
<th>Weeks from starting IFN/RBV</th>
<th>IFN/RBV stop</th>
<th>No IFN/RBV stop</th>
<th>No IFN/RBV stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>IFN/RBV stop</td>
<td>No IFN/RBV stop</td>
<td>No IFN/RBV stop</td>
</tr>
<tr>
<td>24</td>
<td>or latest HCV RNA positive</td>
<td>and latest HCV RNA negative</td>
<td>and HCV RNA missing</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Survival?

Follow-up HCV-RNA not available in all.
Statistical methods

- Mortality rates in the three groups were compared using survival analysis.

- Survival times accrued from 96 weeks after baseline up to the date of death or last follow-up.

- Cox regression models were used to compare hazard ratios of death between response groups.
Results

- 3,500 patients had started HCV treatment and were included:
 - 996 (28.5%) responders
 - 1587 (45.3%) non-responders
 - 917 (26.2%) with unknown response
Patient characteristics at the date of HCV treatment initiation

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Responders N= 996</th>
<th>Non-responders N= 1587</th>
<th>Unknown response N= 917</th>
<th>p-value*</th>
<th>Total N= 3500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median years (IQR)</td>
<td>42 (37, 46)</td>
<td>42 (37, 46)</td>
<td>41 (37, 46)</td>
<td>0.582</td>
<td>42 (37, 46)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>209 (21.0%)</td>
<td>392 (24.7%)</td>
<td>210 (22.9%)</td>
<td>0.091</td>
<td>811 (23.2%)</td>
</tr>
<tr>
<td>Injection drug use, n (%)</td>
<td>468 (47.0%)</td>
<td>1025 (64.6%)</td>
<td>581 (63.4%)</td>
<td><.001</td>
<td>2074 (59.3%)</td>
</tr>
<tr>
<td>On ART, n (%)</td>
<td>838 (84.1%)</td>
<td>1387 (87.4%)</td>
<td>787 (85.8%)</td>
<td>0.065</td>
<td>3012 (86.1%)</td>
</tr>
<tr>
<td>CD4 count, median (IQR) cells/mm³</td>
<td>461 (207, 653)</td>
<td>405 (167, 584)</td>
<td>453 (261, 620)</td>
<td><.001</td>
<td>426 (203, 619)</td>
</tr>
<tr>
<td>HIV-RNA, median (IQR) log₁₀ cp/mL</td>
<td>3.03 (2.00, 4.34)</td>
<td>3.05 (1.74, 4.15)</td>
<td>3.08 (1.94, 4.17)</td>
<td>0.411</td>
<td>3.05 (1.88, 4.17)</td>
</tr>
<tr>
<td>HCV RNA, median (IQR) log₁₀ IU/mL</td>
<td>5.85 (5.11, 6.34)</td>
<td>6.04 (5.56, 6.60)</td>
<td>5.99 (5.60, 6.51)</td>
<td><.001</td>
<td>5.95 (5.37, 6.51)</td>
</tr>
<tr>
<td>HCV genotype 1, n (%)*</td>
<td>262 (50.2%)</td>
<td>351 (62.2%)</td>
<td>138 (55.0%)</td>
<td><.001</td>
<td>751 (56.2%)</td>
</tr>
<tr>
<td>HBsAg-positive, n (%)</td>
<td>87 (10.5%)</td>
<td>371 (33.8%)</td>
<td>23 (4.1%)</td>
<td><.001</td>
<td>481 (19.3%)</td>
</tr>
<tr>
<td>APRI score, median (IQR)</td>
<td>0.9 (0.5, 2.1)</td>
<td>0.8 (0.5, 1.6)</td>
<td>0.8 (0.5, 1.4)</td>
<td><.001</td>
<td>0.8 (0.5, 1.7)</td>
</tr>
</tbody>
</table>

*N with data: 1337
Incidence rates of all-cause death

- After a median of 3.8 years of follow up, a total of 213 (6.1%) deaths had occurred.
 - The rates (per 1,000 PYFU, 95% CI) of all cause death were
 - 12.31 (10.35 - 14.65) for non-responders
 - 6.79 (4.92 - 9.37) for responders
 - 7.8 (5.86 - 10.26) for unknown responders
Cumulative risk of all-cause mortality

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Obs</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1587</td>
<td>127</td>
</tr>
<tr>
<td>2</td>
<td>996</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>917</td>
<td>49</td>
</tr>
</tbody>
</table>

Log rank $p = 0.0019$

<table>
<thead>
<tr>
<th>Year from TO (96 weeks after starting treatment)</th>
<th>Non-responders</th>
<th>Responders</th>
<th>Unknown response</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1587</td>
<td>996</td>
<td>917</td>
</tr>
<tr>
<td>0.5</td>
<td>1428</td>
<td>818</td>
<td>828</td>
</tr>
<tr>
<td>1.0</td>
<td>1222</td>
<td>646</td>
<td>736</td>
</tr>
<tr>
<td>1.5</td>
<td>998</td>
<td>472</td>
<td>632</td>
</tr>
<tr>
<td>2.0</td>
<td>814</td>
<td>342</td>
<td>518</td>
</tr>
<tr>
<td>2.5</td>
<td>626</td>
<td>256</td>
<td>408</td>
</tr>
<tr>
<td>3.0</td>
<td>479</td>
<td>174</td>
<td>308</td>
</tr>
<tr>
<td>3.5</td>
<td>334</td>
<td>114</td>
<td>225</td>
</tr>
<tr>
<td>4.0</td>
<td>201</td>
<td>65</td>
<td>151</td>
</tr>
</tbody>
</table>
Hazard ratio for all-cause death

Adjusted for demographic factors
(age, gender, origin, year of baseline and mode of HIV transmission)

Adjusted for HIV-related factors
(prior AIDS, CD4 count, HIV RNA, HIV treatment use)

Adjusted for hepatitis-related factors
(HBsAg, APRI)

Adjusted for demographic, HIV- and hepatitis related factors

Responders
Non-responders
Unknown response

Adjusted incidence rate ratio (95% CI)
Incidence rates of liver-related death

- Liver-related death accounted for
 - 45/127 (35.4%) of all deaths among non-responders
 - 4/37 (10.8%) among responders
 - 12/49 (24.5%) among patients with unknown response

- Among responders with liver-related death, one out four had evidence of reinfection. None died from hepatocellular carcinoma

- Rates (per 1,000 PYFU, 95% CI) of liver-related death were
 - 4.17 (3.09 - 5.62) for non-responders
 - 0.73 (0.28 - 1.96) for responders
 - 1.9 (1.08 - 3.34) for unknown responders
Cumulative risk of liver-related death

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Obs</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1587</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>996</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>917</td>
<td>12</td>
</tr>
</tbody>
</table>

Non-responders
- 1587
- 1428
- 1222
- 998
- 814
- 626
- 479
- 334
- 201

Responders
- 996
- 818
- 646
- 472
- 342
- 256
- 174
- 114
- 65

Unknown response
- 917
- 828
- 736
- 632
- 518
- 408
- 308
- 225
- 151
Hazard ratio for liver-related death

Adjusted for demographic factors
(age, gender, origin, year of baseline and mode of HIV transmission)

Adjusted for HIV-related factors
(AIDS, CD4 count, HIV RNA, HIV treatment use)

Adjusted for hepatitis-related factors
(HBsAg, APRI)

Adjusted for demographic, HIV- and hepatitis related factors

Responders
Non-responders
Unknown response

Adjusted incidence rate ratio (95% CI)
Non-liver-related mortality according to HCV treatment response

• All liver-related deaths excluded from analysis

• In unadjusted analysis there was no difference (non-responders vs. responders) in relative hazard of non-liver-related death (1.17, 95% CI 0.78 – 1.76).

• In fully adjusted model the relative hazard was 1.16 (95% CI 0.77 – 1.76)
Strengths and limitations

• Large prospective cohort study

• Lack of follow-up HCV-RNA measurements on all patients at least six months after end of therapy
 – some of the patients categorized as responders could have had HCV-RNA relapse
 – some patients categorized as non-responders could have achieved an SVR

• This limitation would only tend to underestimate the survival benefit of HCV therapy
Conclusions

• HIV/HCV co-infected patients with a favourable virological response to HCV treatment had
 – reduced risk of liver-related death and
 – improved overall survival

• There was no differences in risk of non-liver-related death between HCV treatment response groups
Acknowledgements

Project leaders and statistical analysis:

Writing group

Lars Peters (EuroSIDA) Robert Zangerle (AHIVCOS), Giota Touloumi (AMACS), Frederic-Antoine Dauchy (AQUITAINE), Marc van der Valk (ATENA), Gert Fätkenheuer (Cologne-Bonn), Antoni Noguera-Julian (CORISPE-cat), Juan Gonzales (CoRIS), Francois Dabis (HEPAVIH), Antonella Castagna (San Raffaele), Antonella d’Arminio Monforte (ICONA), Carlo Torti (MASTER), Christina Mussini (MODENA), Jordi Ceescat (PISCIS), Helen Kovari (SHCS), Stephane de Wit (St. Pierre), Jaime Cosín (VACH), Dørthe Raben (Copenhagen RCC), Genevieve Chene (Bordeaux RCC), Alessandro Cozzi-Lepri (EuroSIDA)

Regional Coordinating Centres: Bordeaux RCC: Diana Barger, Christine Schwimmer, Monique Termote, Linda Wittkop; Copenhagen RCC: Maria Campbell, Casper M. Frederiksen, Nina Friis-Møller, Jesper Kjaer, Dørthe Raben, Rikke Salbol Brandt

Sources of funding: The COHERE study group has received unrestricted funding from: Agence Nationale de Recherches sur le SIDA et les Hépatites Virales (ANRS), France; HIV Monitoring Foundation, the Netherlands; and the Augustinus Foundation, Denmark. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under EuroCoord grant agreement n° 260694. A list of the funders of the participating cohorts can be found on the Regional Coordinating Centre websites at http://www.cphiv.dk/COHERE/tabid/295/Default.aspx and http://etudes.isped.u-bordeaux2.fr/cohere.

Steering committee:

Executive Committee: Stéphane de Wit (Chair, St. Pierre University Hospital), Jose Mª Miró (PISCIS), Dominique Costagliola (FDH), Antonella d’Arminio-Monforte (ICONA), Antonella Castagna (San Raffaele), Julia del Amo (CoRIS), Amanda Mocroft (EuroSIDA), Dørthe Raben (Head, Copenhagen Regional Coordinating Centre), Geneviève Chêne (Head, Bordeaux Regional Coordinating Centre).

Steering Committee - Contributing Cohorts: Ali Judd (AALPHI), Robert Zangerle (AHIVCOS), Giota Touloumi (AMACS), Josiane Warszawski (ANRS CO1 EPF/ANRS CO11 OBSERVATOIRE EPF), Laurence Meyer (ANRS CO2 SEROCO), François Dabis (ANRS CO3 AQUITAINE), Murielle Mary Krause (ANRS CO4 FDH), Jade Ghosn (ANRS CO6 PRIMO), Catherine Leport (ANRS CO8 COPILOTE), Linda Wittkop (ANRS CO13 HEPAVIH), Peter Reiss (ATENA), Ferdinand Wit (ATENA), Maria Prins (CASCADE), Heiner Bucher (CASCADE), Diana Gibb (CHIPS), Gerd Fätkenheuer (Cologne-Bonn), Julia Del Amo (CoRIS), Niels Obel (Danish HIV Cohort), Claire Thorne (ECS), Amanda Mocroft (EuroSIDA), Ole Kirk (EuroSIDA), Christoph Stephan (Frankfurt), Santiago Pérez-Hoyos (GEMES-Haemo), Osamah Hamouda (German ClinSurv), Barbara Bartmeyer (German ClinSurv), Nikoloz Chkhartishvili (Georgian National HIV/AIDS), Antoni Noguera-Julian (CORISPE-cat), Andrea Antinori (ICC), Antonella d’Arminio Monforte (ICONA), Norbert Brokkmeyer (KOMPNET), Luis Prieto (Madrid PMTCT Cohort), Pablo Rojo Conejo (CORISPE-Madrid), Antoni Soriano-Arandes (NENEX), Manuel Battegay (SHCS), Roger Koyos (SHCS), Cristina Mussini (Modena Cohort), Pat Tockey (NSHPC), Jordi Casabona (PISCIS), Jose M. Miró (PISCIS), Antonella Castagna (San Raffaele), Deborah Konopnick (St. Pierre Cohort), Tessa Goetghelueber (St Pierre Paediatric Cohort), Anders Sonnerborg (Swedish InfCare), Carlo Torti (The Italian Master Cohort), Caroline Sabin (UK CHIC), Ramon Teira (VACH), Myriam Garrido (VACH). David Haerry (European AIDS Treatment Group).

Paediatric cohort representatives: Ali Judd, Pablo Rojo Conejo

- European AIDS Treatment Group: David Haerry.