HCV viremia increases the risk of chronic kidney disease in HIV-infected patients

Lars Peters, Daniel Grint, Amanda Mocroft, Jens D. Lundgren, Jürgen Rockstroh, Vincent Soriano, Peter Reiss, Anna Grzeszczuk, Helen Sambatakou and Ole Kirk for EuroSIDA in EuroCoord
Background

- Although cART has resulted in a decrease in HIV-associated nephropathy, chronic kidney disease (CKD) is still an important cause of morbidity and mortality in HIV patients.

- High prevalence of risk factors (hypertension, diabetes, smoking) for CKD in HIV patients.

- In Europe around a third of all HIV patients are co-infected with hepatitis C virus (HCV).
HCV can cause glomerulonephritis (± cryoglobulinemia)

HCV has been associated with higher risk of diabetes mellitus, which may contribute to the development of CKD

HCV-related liver disease can cause CKD (hepatorenal syndrome)
The Impact of HCV coinfection of HIV-related CKD: a meta-analysis

Limitation: Hepatitis C diagnosis based on antibody status

EuroSIDA

Wyatt et al; AIDS 2008
Objectives

• To investigate the association of HCV viremia and genotype with incidence of CKD in the EuroSIDA observational cohort
Methods (1)

- Eligible patients:
 - ≥3 serum creatinine measurements after 01.01.04,
 - body weight measured within ≤12 months of each creatinine measurement
 - known HCVAb status

- Baseline was the first available estimated glomerular filtration rate (eGFR) (Cockcroft-Gault equation)
 - $eGFR = \frac{(140 \text{- age}) \times \text{weight (kg)} \times 0.85 \text{ (if female)}}{\text{Serum creatinine} \times 72}$

- eGFR standardised for body surface area
Methods (2)

- **CKD:**
 - i) a confirmed eGFR ≤ 60 mL/min/1.73m² for patients with eGFR >60 mL/min/1.73m² at baseline, or
 - ii) a confirmed 25% decline in eGFR for patients with eGFR <60 mL/min/1.73m² at baseline

- **HCV viremic defined as HCV-RNA >615 IU/mL**
 - Low viremia: 615 – 500,000 IU/ml
 - High viremia: >500,000 IU/ml

- **Follow-up was from baseline to either CKD or the last eGFR measurement**

- **Incidence rates of CKD were compared between groups using Poisson regression**
EuroSIDA
N=16597

Patients that meet entry criteria
N=8014

Anti-HCV negative
N=6047

HCV-RNA negative
N=184

HCV-RNA RNA 615 – 500,000 IU/ml
N=452

Anti-HCV positive
N=1967

HCV-RNA unknown
N=826

HCV-RNA RNA >500,000 IU/ml
N=505
Baseline Characteristics of 8014 HIV patients according to HCV serostatus

<table>
<thead>
<tr>
<th></th>
<th>Anti-HCV+ N=1967 (24.5%)</th>
<th>Anti-HCV– N=6047 (75.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (IQR) years</td>
<td>39 (33 – 44)</td>
<td>42 (36 – 50)</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>68.0%</td>
<td>75.9%</td>
</tr>
<tr>
<td>Caucasian ethnicity</td>
<td>91.8%</td>
<td>85.7%</td>
</tr>
<tr>
<td>Risk group (IDU)</td>
<td>71.2%</td>
<td>2.5%</td>
</tr>
<tr>
<td>HBsAg+</td>
<td>6.7%</td>
<td>5.9%</td>
</tr>
<tr>
<td>CD4 nadir, median (IQR) cells/µl</td>
<td>131 (49 – 223)</td>
<td>146 (51 – 245)</td>
</tr>
<tr>
<td>cART at baseline</td>
<td>82.8%</td>
<td>86.6%</td>
</tr>
<tr>
<td>Arterial hypertension</td>
<td>4.4%</td>
<td>8.8%</td>
</tr>
<tr>
<td>Smoking (current)</td>
<td>51.5%</td>
<td>28.2%</td>
</tr>
<tr>
<td>ACE inhibitor use</td>
<td>2.2%</td>
<td>4.6%</td>
</tr>
<tr>
<td>eGFR median (IQR) ml/min per 1.73m²</td>
<td>100 (86.6 – 116.1)</td>
<td>96.6 (82.8 – 112.0)</td>
</tr>
</tbody>
</table>

All P-values <0.0002
Baseline Characteristics of anti-HCV+ patients according to HCV-RNA status

<table>
<thead>
<tr>
<th></th>
<th>HCV-RNA+ N=957</th>
<th>HCV-RNA– N=184</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (IQR) years</td>
<td>40 (36 – 45)</td>
<td>41 (38 – 45)</td>
<td>0.12</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>68.1%</td>
<td>64.1%</td>
<td>0.29</td>
</tr>
<tr>
<td>Risk group (IDU)</td>
<td>74.0%</td>
<td>64.1%</td>
<td>0.0001</td>
</tr>
<tr>
<td>HBsAg+</td>
<td>5.4%</td>
<td>14.7%</td>
<td><0.0001</td>
</tr>
<tr>
<td>cART at baseline</td>
<td>90.5%</td>
<td>90.2%</td>
<td>0.64</td>
</tr>
<tr>
<td>CD4+ nadir median (IQR) cells/µl</td>
<td>124 (41 – 211)</td>
<td>92 (23.5 – 176)</td>
<td>0.013</td>
</tr>
<tr>
<td>Diabetes</td>
<td>3.8%</td>
<td>5.4%</td>
<td>0.29</td>
</tr>
<tr>
<td>Arterial hypertension</td>
<td>5.0%</td>
<td>4.4%</td>
<td>0.70</td>
</tr>
<tr>
<td>Smoking (current)</td>
<td>56.3%</td>
<td>54.4%</td>
<td>0.21</td>
</tr>
<tr>
<td>ACE inhibitor use</td>
<td>2.2%</td>
<td>4.4%</td>
<td>0.94</td>
</tr>
<tr>
<td>eGFR median (IQR) ml/min per 1.73m²</td>
<td>99.9 (86.8 – 115.2)</td>
<td>102.0 (86.7 – 114.6)</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Results

- Median number of eGFR measurements/patient was 11 (IQR 7-16)
- A total of 419 patients (5.5%) progressed to CKD during 30164 PYFU
- Incidence of CKD 13.9/1000 PYFU (95% CI 12.6–15.2)
Progression to CKD
(All patients; 419 events)

Incidence Rate Ratio (95% CI)

Age (per 10 years older)
Gender (men vs women)
AIDS during follow up
CD+ nadir (per 100 cells higher)
Hypertension
Anti-HCV (pos vs neg)
Tenofovir*
Indinavir*
Atazanavir*
Lopinavir*
Baseline eGFR (per 5 ml higher)

Univariate
Multivariate

*per year cumulative exposure
Progression to CKD
(All patients; 419 events)

Incidence Rate Ratio (95% CI)

- Age (per 10 years older)
- Gender (men vs women)
- AIDS during follow up
- CD+ nadir (per 100 cells higher)
- Hypertension
- Anti-HCV (pos vs neg)
- Tenofovir*
- Indinavir*
- Atazanavir*
- Lopinavir*
- Baseline eGFR (per 5 ml higher)

*per year cumulative exposure
Role of HCV Viremia and Genotype in Progression to CKD

Adjusted incidence rate ratio (95% CI) p-value

HCVAb negative

- HCVAb positive

HCVAb negative

- HCVAb+ / <615 IU/ml
- 615 – 500.000 IU/ml
- >500.000 IU/ml
- Unknown

HCV genotype 2-4

- HCV genotype 1

EuroSIDA
Sensitivity analysis

• Adjustment for intravenous drug use did not change the results, and was not included in the final model due to collinearity between this variable and HCV status
Summary

• Patients with chronic HCV infection were at higher risk of CKD

• Higher HCV-RNA levels were associated with an increased risk of CKD

• The risk of CKD was similar in anti-HCV negative patients and anti-HCV+ patients with resolved infection

• HCV genotype was not significantly associated with risk of CKD
Perspectives

- The mechanisms by which HCV may affect renal function are unclear and warrant further study
 - Direct effect of the virus?
 - Marker of severe liver disease?

- Should HIV/HCV coinfected patients avoid ARVs associated with risk of CKD?
- Does anti-HCV treatment reverse the decline in renal function in HCV patients with CKD?
The multi-centre study group of EuroSIDA (national coordinators in parenthesis).

Argentina: M Losso, C Elias, Hospital JM Ramos Mejia, Buenos Aires. Austria: N Vetter, Pulumologisches Zentrum der Stadt Wien, Vienna; R Zangerle, Medical University Innsbruck, Innsbruck. Belarus: I Karpov, A Vassilenko, Belarus State Medical University, Minsk; VM Mitsura, Gomel State Medical University, Gomel; O Suexnov, Regional AIDS Centre, Svetlogorsk. Belgium: N Ciomek, S De Wit, M Delforge, Saint-Pierre Hospital, Brussels; R Columbans, Institute of Tropical Medicine, Antwerp; L Vanekerckhove, University Ziekenhuis Gent, Gent. Bosnia-Herzegovina: V Hadzisimunovic, Klinicki Centar Univerziteta Sarajevo, Sarajevo. Bulgaria: K Kostov, Infectious Diseases Hospital, Sofia. Croatia: I Begovic, University Hospital of Infectious Diseases, Zagreb. Czech Republic: M Machala, D Jillich, Faculty Hospital Bulovka, Prague; D Sedlacek, Charles University Hospital, Plzen. Denmark: J Nielsen, K Gronborg, T Benfield, M Larsen, Hvidovre Hospital, Copenhagen; J Gerstoft, T Katenstein, A-E B Hansen, P Skinhøj, Rigshospitalet, Copenhagen; C Pedersen, Odense University Hospital, Odense; L Ostergaard, Skejby Hospital, Aarhus. Estonia: K Zilmer, West-Tallinn Central Hospital, Tallinn; Jelena Smidt, Nakkussoend Sisuklinika, Kohtla-Jarve. Finland: M Ristola, Helsinki University Central Hospital, Helsinki. France: C Falkama, Hopital de la Pitié-Salpêtrière, Paris; J-P Viard, Hopital Necker-Enfants Malades, Paris; P-M Girard, Hopital Saint-Antoine, Paris; JM Livroz, Hopital Édouard Herriot, Lyon; J Vanhems, University Claude Bernard, Lyon; C Pradier, Hopital de Toulouse, Toulouse; F Dabis, F Deu, Unité INSERM, Bordeaux. Germany: J Knuet, Robert Koch Institut; K Schmidt, Medizinische Hochschule Hannover; J Van Lunen, O Degen, University Medical Center Hamburg-Eppendorf, Infectious Diseases Unit, Hamburg; HJ Stellbrink, IPM Study Center, Hamburg; S Staszewski, JW Goethe University Hospital, Frankfurt; J Bogner, Medizinische Poliklinik, Munich; G Fätkenheuer, Universität Köln, Cologne. Greece: J Kosmidis, P Gargalianos, G Xylomenos, J Perdios, Athens General Hospital; G Panos, A Filandras, E Karabatski, 1st IKA Hospital; H Sambatakou, Ippokration General Hospital, Athens. Hungary: D Rozental, Szent Lásló Hospital, Budapest. Ireland: F Mulcahy, St. James’s Hospital, Dublin. Israel: I Yust, D Turner, M Burke, Ichilov Hospital, Tel Aviv; S Pollack, G Hassoun, Rambam Medical Center, Haifa; S Maayan, Hadassah University Hospital, Jerusalem. Italy: S Vella, Istituto Superiore di Sanità, Rome; R Esposito, I Mazeu, C Mussini, Università Modena, Modena; C Arici, Ospedale Riuniti, Bergamo; R Pristera, Ospedale Generale Regionale, Bolzano; F Mazzotta, A Gabbuti, Ospedale S Maria Annunziata, Firenze; V Vullo, M Lichine, University di Roma la Sapienza, Rome; A Chiranni, E Montesarchio, M Gargiulo, Presidio Ospedaliero AD Catugno, Monaldi Hospital, Napoli; G Antonucci, A Testa, P Arcisio, C Viassi, M Zaccarelli, Istituto Nazionale Malattie Infettive Lazzaro Spallanzani, Rome; A Lazzarin, A Castagna, N Gianotti, Ospedale San Raffaele, Milano; M Galli, A Ridolfo, Osp. L. Sacco, Milano; D Arminio Monforte, Istituto Di Clinica Malattie Infettive e Tropicale, Milano. Latvia: R Rozenzve, J Zeltina, Infection Centre of Latvia, Riga. Lithuania: J Chaplinskapis, Lithuanian AIDS Centre, Vilnius. Norway: P Knyss, Gastroenterology, Medical University, Trondheim; A Horban, E Bakowska, Centrum Diagnostyki i Terapii AIDS, Warsaw; A Grzeszcuk, R Fisiak, Medical University, Białystok; A Boron-Kaczmarska, M Pynka, M Parczewski, Medical University, Szczecin; M Beniowski, E Mularska, Osrodek Onkologii, Szczecin; T Ormaasen, A Maeland, J Bruun, Ullevål Hospital, Oslo. Poland: D Banhegyi, Szent Lásló Hospital, Budapest. Portugal: J Gonzalez, Hospital Clinic i Provincial, Barcelona; JM Gatell, JM Miró, Hospital Clinic i Provincial, Barcelona; F Maltez, Hospital Curry Cabral, Lisbon; J Chirianni, E Montesarchio, M Gargiulo, Presidio Ospedaliero AD Catugno, Monaldi Hospital, Napoli; G Antonucci, A Testa, P Arcisio, C Viassi, M Zaccarelli, Istituto Nazionale Malattie Infettive Lazzaro Spallanzani, Rome; A Lazzarin, A Castagna, N Gianotti, Ospedale San Raffaele, Milano; M Galli, A Ridolfo, Osp. L. Sacco, Milano; A D'Arminio Monforte, Istituto Di Clinica Malattie Infettive e Tropicale, Milano. Russia: A Raikmanova, Medical Academy Botkin Hospital, St Petersburg; N Zakharova, St Petersburg; S Buzunov, Novgorod Centre for AIDS, Novgorod. Serbia: D Jevtic, The Institute for Infectious and Tropical Diseases, Belgrade. Slovakia: M Mokras, D Staneková, Dérer Hospital, Bratislava. Slovenia: J Tomazic, University Clinical Centre Ljubljana, Ljubljana. Spain: J Gonzalez-Lahoz, V Soriano, P Labarga, J Medrano, Hospital Carlos III, Madrid; S Moreno, J M. Rodriguez, Hospital Ramon y Cajal, Madrid; B Cluet, A Jou, R Paredes, C Tural, J Puig, I Bravo, Hospital Germans Trias i Pujol, Badalona; JM Gatell, JM Miró, Hospital Clinico i Provincial, Barcelona; P Domingo, M Gutierrez, M Mateo, MA Sambeat, Hospital Sant Pau, Barcelona. Sweden: A Karlsson, Venaheus-Sodersjukhuset, Stockholm; L Flamholc, Malmo University Hospital, Malmo. Switzerland: B Ledergerber, R Weber, University Hospital Zurich; P Francioli, M Cavassini, Centre Hospitalier Universitaire Vaudois, Lausanne; B Hirschel, E Boffi, Hospital Cantonal Universitaire de Genève, Genève; H Furrier, Inselspital Bern, Bern; M Battegay, L Elzi, University Hospital Basel. Ukraine: E Kravchenko, N Chentsova, Kiev Centre for AIDS, Kiev; V Frolow, G Kutyna, Luhansk State Medical University, Luhansk; S Savitsky, Odesa Region AIDS Centre, Odesa; A Krasnov, Kharkiv State Medical University, Kharkiv. United Kingdom: S Barton, St. Stephen’s Clinic, Chelsea and Westminster Hospital, London; AM Johnson. D Mercey, Royal Free and University College London Medical School, London (University College Campus); A Phillips, MA Johnson, A Mocroft, Royal Free and University College Medical School, London (Royal Free Campus); M Murphy, Medical University of Saint Bartholomew’s Hospital, London; J Weber, S Scullard, Imperial College School of Medicine at St. Mary’s, London; M Fisher, Royal Sussex County Hospital, Brighton; C Leen, Western General Hospital, Edinburgh.

EuroSIDA representatives to EuroCoord: O Kirk, A Mocroft, J Grunop, S deWitt, P Reiss, A Cozzi-Lepri, R Thiembaut, J Rockstroh, D Burger, R Paredes, J Kjær

Statement of Funding: Primary support for EuroSIDA is provided by the European Commission BIOMED 1 (CT94-1637), BIOMED 2 (CT97-2713), the 5th Framework (QLK2-2000-00773), the 6th Framework (LSHP-CT-2006-018632), and the 7th Framework (FP7/2007-2013, EuroCoord n° 260694) programmes. Current support also includes unrestricted grants by Gilead, Pfizer and Merck & Co. The participation of centres from Switzerland was supported by The Swiss National Science Foundation (Grant 108789).

Updated August 2011