15th International Workshop on Adverse Drug Reactions and Co-Morbidities in HIV.

Management of Cardiovascular risk in HIV positive individuals in Europe

M Shahmanesh, A Schultze, F Burns, O Kirk, J Lundgren, C Mussini, C Pedersen, S De Wit, G Kutsyna, and A Mocroft

on behalf of EuroSIDA in EuroCoord
Background

- Antiretroviral therapy results in an aging cohort
- High prevalence of cardiovascular disease in HIV+
- Stepped approach to cardiovascular disease
 - Primary prevention
 - Screening for risk factors
 - Non-pharm management of modifiable risk
 - Pharmacological management of modifiable risk
 - Specialist care
- Understanding cv risk management in HIV+ will inform improved care
Chronic disease paradigm for cv disease

- Total population HIV+ accessing care
- With modifiable CV risk
- Screened for CV risk
- For CV risk
- Treated
- Modified CV risk
- CV risk
Deaths attributed to 19 leading factors, by country income level, 2004

Mortality in thousands (total: 58.8 million)
Aims

• Describe patterns of cardiovascular (CV) risk and successful CV risk modification in a European HIV Cohort

• Specific objectives
 1. Prevalence and incidence of CV risk
 2. Factors associated with CV risk
 3. Factors associated with successful CV risk modification
Methods (setting)

EuroSIDA is a large prospective cohort with 18,791 patients from 108 clinics in 34 European countries, Israel and Argentina. Regularly collecting:

- HIV transmission risk group
- CD4 counts, HIV viral loads
- All treatment start/stop dates
- Clinical AIDS events
- Non-AIDS events (since 2001)
- Deaths and causes of death
Methods (population)

- Population:
 - EuroSIDA patients (from 1/1/2000)
 - > 2 time points CV risk can be calculated

- Follow-up
 - Baseline: 1st date CV risk can be calculated
 - Censor: outcome of interest, month of last CV risk factor measurement, or 31/12/2011
Methods
(measurement & analysis)

• Outcome variables

1. High CV risk defined as 5-year CV risk > 5% using D.A.D. equation

 \(\text{Duration of lopinavir \& Indinavir, current Abacavir, age, gender, family history of CVD, systolic blood pressure, lipid profile, smoking status and diabetes} \)

2. Risk modification defined as two consecutive measurements meeting EACs guidelines

• Analysis: Poisson regression
<table>
<thead>
<tr>
<th>Modifiable CV risk factors</th>
<th>Clinical indication for treatment of modifiable risk (EACS guidelines)</th>
<th>Successful risk modification (Two consecutive measures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>Treatment of BP</td>
<td>Systolic BP <140 (130 if diabetic), Diastolic BP <90 (<80 if diabetic) mm Hg</td>
</tr>
<tr>
<td>Systolic blood pressure (BP) >140 mm Hg, Diastolic BP >90 mm Hg Antihypertensive treatment</td>
<td>Systolic BP >140 Diastolic BP >90 mm Hg)</td>
<td></td>
</tr>
<tr>
<td>High cholesterol</td>
<td>Predicted 10 year CV risk of over 20%, diabetic, or established CV disease</td>
<td>Lowering total cholesterol to less than 4 mmol/l</td>
</tr>
<tr>
<td>Total cholesterol >6 mmol/l Cholesterol:HDL ratio >5 Receiving statins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td>Current smoker</td>
<td>Stopped smoking</td>
</tr>
<tr>
<td>Overweight</td>
<td>Diet and exercise</td>
<td>Marker of lifestyle change</td>
</tr>
<tr>
<td>Body Mass Index (BMI) over 25 kg/m²</td>
<td></td>
<td>Lowering BMI to less than 25 kg/m²</td>
</tr>
</tbody>
</table>
Modifiable Risk Factors N=5719

- BMI > 25 (1680) - 29%
- Hypertension - 31%
- High cholesterol (2713) - 47%
- Current smoker (2733) - 48%
- D.A.D > 5% (1140) - 20%
- Framinghams >5% (1725) - 30%
- Total (5719) - 100%
<table>
<thead>
<tr>
<th></th>
<th>Total (n/N)</th>
<th>5 year DAD risk > 5% (n/N%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (N)</td>
<td>5719</td>
<td>1140</td>
</tr>
<tr>
<td>Age (Median, IQR)</td>
<td>41 (36-50)</td>
<td>54 (48-61)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>4405 (77)</td>
<td>1075 (94)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>5080 (89)</td>
<td>1055 (92)</td>
</tr>
<tr>
<td>Mode of Infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSM</td>
<td>2589 (45)</td>
<td>644 (56)</td>
</tr>
<tr>
<td>IDU</td>
<td>934 (16)</td>
<td>88 (8)</td>
</tr>
<tr>
<td>Het</td>
<td>1726 (30)</td>
<td>281 (25)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>1613 (28)</td>
<td>254 (22)</td>
</tr>
<tr>
<td>Central</td>
<td>1623 (28)</td>
<td>386 (34)</td>
</tr>
<tr>
<td>North</td>
<td>1138 (20)</td>
<td>353 (31)</td>
</tr>
<tr>
<td>East</td>
<td>1215 (21)</td>
<td>131 (11)</td>
</tr>
<tr>
<td>Argentina</td>
<td>130 (2)</td>
<td>16 (1)</td>
</tr>
<tr>
<td></td>
<td>Total (N)</td>
<td>5 year DAD risk > 5% (n/N%)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Total (N)</td>
<td>5719</td>
<td>1140</td>
</tr>
<tr>
<td>Age (Median, IQR)</td>
<td>41 (36-50)</td>
<td>54 (48-61)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>4405 (77)</td>
<td>1075 (94)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>5080 (89)</td>
<td>1055 (92)</td>
</tr>
<tr>
<td>Mode of Infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSM</td>
<td>2589 (45)</td>
<td>644 (56)</td>
</tr>
<tr>
<td>IDU</td>
<td>934 (16)</td>
<td>88 (8)</td>
</tr>
<tr>
<td>Het</td>
<td>1726 (30)</td>
<td>281 (25)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>1613 (28)</td>
<td>254 (22)</td>
</tr>
<tr>
<td>Central</td>
<td>1623 (28)</td>
<td>386 (34)</td>
</tr>
<tr>
<td>North</td>
<td>1138 (20)</td>
<td>353 (31)</td>
</tr>
<tr>
<td>East</td>
<td>1215 (21)</td>
<td>131 (11)</td>
</tr>
<tr>
<td>Argentina</td>
<td>130 (2)</td>
<td>16 (1)</td>
</tr>
</tbody>
</table>
CV Risk Development

1157/4142 (28%) develop 5 year CV risk > 5%
(using D.A.D)

Incidence rate of 6.6 (CI 6.3-6.9)/ 100 PY
Factors associated with 5%, 5 year CV risk development (N=1140)

Adjusted for gender, ethnicity, risk group, region, calendar year, CD4-cell count, CD4 nadir, prior AIDS diagnosis, prior AIDS or non-AIDS event, cumulative cART exposure, viral load suppression, hepatitis B and C

EuroSIDA
<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Indicated for modification n (%)</th>
<th>Modified n (%)</th>
<th>PYFU</th>
<th>Incidence Rate / 100 PYFU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Pressure</td>
<td>1533 (31)</td>
<td>819 (46)</td>
<td>5557</td>
<td>14.7</td>
</tr>
<tr>
<td>Smoking</td>
<td>2709 (48)</td>
<td>803 (30)</td>
<td>15107</td>
<td>5.5</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>910 (16)</td>
<td>172 (19)</td>
<td>5115</td>
<td>3.4</td>
</tr>
<tr>
<td>BMI</td>
<td>1663 (29)</td>
<td>418 (25)</td>
<td>8395</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Adjusted Rate Ratios for risk modification

1. Adjusted for age, gender, calendar year, ethnicity, mode of infection, geographical region, CD4 count, CD4 nadir, Undetectable VL, Prior AIDS diagnosis, Prior non-AIDS event, cumulative cART exposure, hepatitis B + C, prior CVD event, family history of CVD and diabetes, BP at baseline, overweight, lipid-lowering drugs, high cholesterol and smoking status;
2. Patients from Argentina considered separately.
Adjusted Rate Ratios for risk modification

Adjusted Rate Ratios\(^1\) for the modification of blood pressure

Gender
Male vs Female

Age / 10 years

Calendar Year /1 year

Region (vs South)\(^2\)
Central
North
East

1. Adjusted for age, gender, calendar year, ethnicity, mode of infection, geographical region, CD4 count, CD4 nadir, Undetectable VL, Prior AIDS diagnosis, Prior non-AIDS event, cumulative cART exposure, hepatitis B + C, prior CVD event, family history of CVD and diabetes, BP at baseline, overweight, lipid-lowering drugs, high cholesterol and smoking status;

2. Patients from Argentina considered separately.
Adjusted Rate Ratios for risk modification

Adjusted Rate Ratios\(^1\) for stopping smoking

- **Gender**
 - Male vs Female

- **Age** / 10 years

- **Calendar Year** / 1 year

- **Region** (vs South)\(^2\)
 - Central
 - North
 - East

1. Adjusted for age, gender, calendar year, ethnicity, mode of infection, geographical region, CD4 count, CD4 nadir, Undetectable VL, Prior AIDS diagnosis, Prior non-AIDS event, cumulative cART exposure, hepatitis B + C, prior CVD event, family history of CVD and diabetes, BMI and cholesterol at baseline, antihypertensive drugs, smoking status, hypertension

2. Patients from Argentina considered separately.
Adjusted Rate Ratios for risk modification

Adjusted Rate Ratios\(^1\) for the modification of cholesterol

- Gender
 - Male vs Female

- Age / 10 years

- Calendar Year /1 year

- Region (vs South)\(^2\)
 - Central
 - North
 - East

1. Adjusted for age, gender, calendar year, ethnicity, mode of infection, geographical region, CD4 count, CD4 nadir, Undetectable VL, Prior AIDS diagnosis, Prior non-AIDS event, cumulative cART exposure, hepatitis B + C, prior CVD event, family history of CVD and diabetes, BMI and cholesterol at baseline, antihypertensive drugs, smoking status, hypertension

2. Patients from Argentina considered separately.
Adjusted Rate Ratios for the modification of BMI

1. Adjusted for age, gender, calendar year, ethnicity, mode of infection, geographical region, CD4 count, CD4 nadir, Undetectable VL, Prior AIDS diagnosis, Prior non-AIDS event, cumulative cART exposure, hepatitis B + C, prior CVD event, family history of CVD and diabetes, cholesterol and BMI at baseline, antihypertensive drugs, smoking status, hypertension.

2. Patients from Argentina considered separately.
Adjusted Rate Ratios for risk modification

1. All adjusted for age, gender, calendar year, ethnicity, mode of infection, geographical region, CD4 count, CD4 nadir, Undetectable VL, Prior AIDS diagnosis, Prior non-AIDS event, cumulative CART exposure, hepatitis B + C, prior CVD event, family history of CVD and diabetes. Adjustments per figure: 2) BP at baseline, overweight, lipid-lowering drugs, high cholesterol and smoking status; 3) BMI and cholesterol at baseline, antihypertensive drugs, smoking status, hypertension; 4) BMI, high cholesterol, antihypertensive drugs, lipid lowering drugs, hypertension, overweight; 5) cholesterol and BMI at baseline, antihypertensive drugs, smoking status, hypertension.

2. Patients from Argentina considered separately.
Limitations

- Conservative definition of high risk
- D.A.D. CV risk prediction is short follow-up
 - DAD versus Framingham’s prediction of CV event
 - Medium (5-10%) risk aRR of 11 versus 4
 - High (>10%) risk aRR of 20 versus 8
 - The findings were similar with Framingham
- Channeling bias, higher risk people more CV risk assessment
 - Almost everyone had one CV risk assessment
 - Those with one CV risk assessment were higher risk than those with two
Conclusion

- Prevalence and incidence of CV risk is high
- Over 50% modified some of CV risk
- CV risk modification improved over time
 - smoking and hypertension
- Management of hypertension was more successful in younger people and women
- Geographical variation
Implications

• Modifying CV risk is necessary to sustain the health improvements in HIV
 • Improve the screen and treat cascade for CV risk
 • Reduce geographical and age heterogeneity

• Develop Innovative models of integrated HIV and CV risk Management
 • Test effectiveness on both HIV and CV outcomes in rigorous trials
The EuroSIDA Study Group

The multi-centre study group of EuroSIDA (national coordinators in parenthesis).

Argentina: (M Losso), M Kundra, Hospital JM Ramos Mejia, Buenos Aires. **Austria:** (N Vetter), Pulumologisches Zentrum der Stadt Wien, Vienna; R Zangerle, Medical University Innsbruck, Innsbruck. **Belarus:** (I Karpov), A Vassilenko, Belarus State Medical University, Minsk, VM Mitsu, Gomel State Medical University, Gomel; O Suetnov, Regional AIDS Centre, Svetlogorsk. **Belgium:** (N Clumeck), S De Wit, M Delforge, Saint-Pierre Hospital, Brussels; E Florence, Institute of Tropical Medicine, Antwerp; L Vandekerckhove, University Ziekenhuis Gent, Gent. **Bosnia-Herzegovina:** (V Hadzismajovic), Klinicki Centar Univerziteta Sarajevo, Sarajevo. **Bulgaria:** (K Kostov), Infectious Diseases Hospital, Sofia. **Croatia:** (J Begovic), University Hospital of Infectious Diseases, Zagreb. **Czech Republic:** (L Machala), A H Fischer, A Bojesen (Chair), Imperial College School of Medicine at St. Mary's, London; M Fisher, A H Fischer, A Bojesen (Chair). **Denmark:** (J Nielsen), G Kronborg, T Benfield, M Larsen, Hvidovre Hospital, Copenhagen; J Gerstoft, T Katzenstein, A-B E Hansen, P Skinhøj, Rigshospitalet, Copenhagen; C Pedersen, Odense University Hospital, Odense; L Ostergaard, Skejby Hospital, Aarhus, U B Dragsted, Roskilde Hospital, Roskilde; L N Nielsen, Hillerod Hospital, Hillerod. **Estonia:** (K Zilmer), West-Tallinn Central Hospital, Tallinn; Jelena Smidt, Nakkuuskond Siseklinik, Koorva-Järve. **Finland:** (M Ristola), Helsinki University Central Hospital, Helsinki. **France:** (C Kattama), Hôpital de la Pièti-Salpêtrière, Paris; J-P Viard, Hôtel-Dieu, Paris; P-M Girard, Hospital Saint-Antoine, Paris; P Vanhems, University Claude Bernard, Lyon; C Pradier, Hôpital de l’Archet, Nice; F Dabis, D N eu, Unité INSERM, Bordeaux, C Duvièr, Hôpital Necker-Enfants Malades, Paris. **Germany:** (J Rockstroh), Universitätsklinik Bonn; R Schmidt, Medizinische Hochschule Hannover; J van Lunzen, O Degen, University Medical Center Hamburg-Eppendorf, Infectious Diseases Unit, Hamburg; HJ Steinhoff, IPM Study Center, Hamburg; M Bickel, JW Goethe University Hospital, Frankfurt; J Bogner, Medizinische Poliklinik, Munich; G. Fäthekneuer, Universität Köln, Cologne. **Greece:** (I Kosmidis), P Gargalianos, G Ylomos, J Perdios, Athens General Hospital; H Sambatakou, Ipoppokratia General Hospital of Athens. **Hungary:** (D Banhegy), Szent László Hospital, Budapest. **Iceland:** (M Gottfredsson), Landspítali University Hospital, Reykjavik. **Ireland:** (F Mulcahy), St. James’s Hospital, Dublin. **Israel:** (I Yust), D Turner, M Burke, Ichilov Hospital, Tel Aviv; S Pollack, G Hassoun, Rambam Medical Center, Haifa; H Elinav, M Haouzi, Hadassah University Hospital, Jerusalem. **Italy:** (A D’Arminio Monforte), Istituto Di Clinica Malattie Infettive e Tropicale, Milan; R Esposito, I Mazzeu, C Mussini, Università Modena, Modena; C Arci, Ospedale Riuniti, Bergamo; R Pristera, Ospedale Generale Regionale, Bolzano; M Zizzari, L Galli, G Gasponi, G Sacc, Milan. **Latvia:** (B Rezente), I Zelti, Infectology Centre of Latvia, Riga. **Lithuania:** (S Chapliniskas), Lithuanian AIDS Centre, Vilnius. **Luxembourg:** (T Staub), R Hemmer, Centre Hospitalier, Luxembourg. **Netherlands:** (P Reiss), Academisch Medisch Centrum bij de Universiteit van Amsterdam, Amsterdam. **Norway:** (V Ormaasen), A Maeland, J Brun, Ullevål Hospital, Oslo. **Poland:** (K Knys) J Gasiorowski, Medical University, Wrocław; A Horban, E Bakowska, Centrum Diagnostyki i Terapii AIDS, Warsaw; A Grzeszczuk, M Fisiak, Medical University, Białystok; A Boron-Kaczmarska, M Pynka, M Parczewski, Medical University, Szczecin; M Bieminski, E Mularska, Osrodek Diagnostyki i Terapii AIDS, Chorzów; H Trocha, Medical University, Gdansk; E Jabłonowska, E Maciołek, W Wojciech, Wojewódzki Szpital Specjalistyczny, Łódz. **Portugal:** (M Doroana), M Doroana, L Caldeira, Hospital Santa Maria, Lisbon; B Clotet, A Mocroft, J García, Hospital Clinic, Barcelona; J Gatell, J Miró, Hospital Clinic i Provincial, Barcelona; P Domingo, M Gutierrez, G Mateo, MA Sambeat, Hospital Sant Pau, Barcelona; J Medrano, Hospital Universitario de Alava, Vitoria-Gasteiz. **Romania:** (D Duiculescu), Spitalul de Boli Infecțioase si Tropicale: Dr. Victor Babes, București. **Russia:** (A Rakhamnova), Medical Academy Botkin Hospital, St Petersburg; A Rakhamnova, St Petersburg AIDS Centre. **Spain:** (J González-Lahoz), V Soriano, P Labarga, Hospital Carlos III, Madrid; S Moreno, J. M. Rodriguez, Hospital Ramon y Cajal, Madrid; B Clotet, A Jou, R Paredes, C Tural, J Puig, I Bravo, Hospital Germans Trias i Pujol, Badalona; JM Gatell, JM Miró, Hospital Clinic i Provincial, Barcelona; P Domingo, M Gutierrez, G Mateo, MA Sambeat, Hospital Sant Pau, Barcelona; J Medrano, Hospital Universitario de Alava, Vitoria-Gasteiz. **Sweden:** (A Blaxhult), Vehansels-Sodersjukhuset, Stockholm; L Flammholc, Malmö University Hospital, Malmö; T Thalme, A Sonnerborg, Karolinska University Hospital, Stockholm. **Switzerland:** (B Ledergerber), R Weber, University Hospital, Zürich; P Francioli, M Cavassini, Centre Hospitalier Universitaire Vaudois, Lausanne; B Hirschel, E Boffi, Hospital Cantonal Universitaire de Geneve, Geneva; F Hurrer, Inselspital Bern, Bern; M Battegay, L Elzi, University Hospital Basel; P Vernazza, Cantonsspital, St. Gallen. **Ukraine:** (E Kravchenko), N Chentsova, Kiev Centre for AIDS, Kiev; V Frvol, G Kutsyna, Luhansk State Medical University; Luhansk; S Servitskyi, Odessa Region AIDS Centre, Odessa; A Kuznetsova, Kharkov State Medical University, Kharkov; Kyselyova, Crimean Republic AIDS centre, Simferopol. **United Kingdom:** (B Gazzard), St. Stephen’s Clinic, Chelsea and Westminster Hospital, London; AM Johnson, E Simons, Mortimer Market Centre, London; A Phillips, MA Johnson, A Mocroft, Mocroft, Royal Free and University College Medical School, London (Royal Free Campus). C Orkin, Royal Free Hospital, London; J Weber, G Scullard, Imperial College School of Medicine at St. Mary’s, London; M Fisher, Royal Sussex County Hospital, Brighton; C Leen, Western General Hospital, Edinburgh.

Steering Committee: J Gatell, B Gazzard, A Horban, I Karpov, B Ledergerber, M Losso, A D’Arminio Monforte, C Pedersen, A Rakhamnova, M Ristola, J Rockstroh (Chair), S De Wit (Vice-Chair)

Additional voting members: J Lundgren, A Phillips, P Reiss

Coordinating Centre Staff: O Kirk, A Mocroft, A Cozzi-Lepri, D Grill, A Schultze, L Shepherd, D Raben, D Podlekarova, K Jkaer, L Peters, J E Nielsen, C Matthews, A H Fischer, A Bojesen

Statement of Funding:

Primary support for EuroSIDA is provided by the European Commission BIOMED 1 (CT94-1637), BIOMED 2 (CT97-2713), the 5th Framework (QLK2-2000-00773), the 6th Framework (LSHP-CT-2006-018632), and the 7th Framework (FP7/2007-2013). EuroCoord nº 260694 programmes. Current support includes unrestricted grants by Bristol-Myers Squibb, Janssen R&D, Merck and Co., Inc., Pfizer Inc., GlaxoSmithKline LLC. The participation of centres from Switzerland was supported by The Swiss National Science Foundation (Grant 108787).